Classification of robust isolated vortices in two-dimensional hydrodynamics

Author:

CHAVANIS P. H.,SOMMERIA J.

Abstract

We determine solutions of the Euler equation representing isolated vortices (monopoles, dipoles) in an infinite domain, for arbitrary values of energy, circulation, angular momentum and impulse. A linear relationship between vorticity and stream function is assumed inside the vortex (while the flow is irrotational outside). The emergence of these solutions in a turbulent flow is justified by the statistical mechanics of continuous vorticity fields. The additional restriction of mixing to a ‘maximum-entropy bubble’, due to kinetic constraints, is assumed. The linear relationship between vorticity and stream function is obtained from the statistical theory in the limit of strong mixing (when constraints are weak). In this limit, maximizing entropy becomes equivalent to a kind of enstrophy minimization. New stability criteria are investigated and imply in particular that, in most cases, the vorticity must be continuous (or slightly discontinuous) at the vortex boundary. Then, the vortex radius is automatically determined by the integral constraints and we can obtain a classification of isolated vortices such as monopoles and dipoles (rotating or translating) in terms of a single control parameter. This article generalizes the classification obtained in a bounded domain by Chavanis & Sommeria (1996).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3