Abstract
The linear stability of flow along an annular pipe formed by two coaxial circular cylinders is considered. We find that the flow is unstable above a critical Reynolds number for all 0 < η ≤ 1, where η is the ratio between the radii of the inner and outer cylinders. This contradicts a recent claim that the flow is stable at all Reynolds numbers for radius ratio η less than a finite critical value. We find that non-axisymmetric disturbances become stable at all Reynolds numbers for η < 0.11686215, and we are able to study this ‘bifurcation from infinity’ asymptotically. However, axisymmetric disturbances remain unstable, with critical Reynolds number tending to infinity as η → 0. A second asymptotic analysis is performed to show that the critical Reynolds number Rec ∝ η−1 log(η−1) as η → 0, with the form of the mean flow profile causing the appearance of the logarithm. The stability of Hagen–Poiseuille flow (η = 0) at all Reynolds numbers is therefore interpreted as a limit result, and there are no annular pipe flows which share this stability.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献