Author:
GRIMSHAW R. H. J.,ZHANG D.-H.,CHOW K. W.
Abstract
It is well-known that transcritical flow over a localized obstacle generates upstream and downstream nonlinear wavetrains. The flow has been successfully modelled in the framework of the forced Korteweg–de Vries equation, where numerical and asymptotic analytical solutions have shown that the upstream and downstream nonlinear wavetrains have the structure of unsteady undular bores, connected by a locally steady solution over the obstacle, which is elevated on the upstream side and depressed on the downstream side. Inthispaper we consider the analogous transcritical flow over a step, primarily in the context of water waves. We use numerical and asymptotic analytical solutions of the forced Korteweg–de Vries equation, together with numerical solutions of the full Eulerequations, to demonstrate that a positive step generates only an upstream-propagating undular bore, and a negative step generates only a downstream-propagating undular bore.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献