Flow structure produced by the interaction and merger of a pair of co-rotating wing-tip vortices

Author:

DEVENPORT WILLIAM J.,VOGEL CHRISTINE M.,ZSOLDOS JEFFERY S.

Abstract

Experiments have been performed to study the co-rotating wing-tip vortex pair produced by a pair of rectangular wings in a split-wing configuration. Detailed measurements made in cross-sections upstream and downstream of merger reveal, for the first time, the complex turbulence structure of this flow. The vortices spiral around each other and merge some 20 chordlengths downstream of the wings. As merger is approached the vortices lose their axisymmetry – their cores develop lopsided tangential velocity fields and the mean vorticity field is convected into filaments. The cores also become part of a single turbulence structure dominated by a braid of high turbulence levels that links them together. The braid, which quite closely resembles the structure formed between adjacent spanwise eddies of transitional mixing layers, grows in intensity with downstream distance and extends into the vortex cores. Unlike a single tip vortex, the unmerged cores appear turbulent.The merging of the vortices wraps the cores and the flow structure that surrounds them into a large turbulent region with an intricate double spiral structure. This structure then relaxes to a closely axisymmetric state. The merged core appears stable and develops a structure similar to the laminar core of a vortex shed from a single wing. However, the turbulent region formed around the vortex core during the merger process is much larger and more axisymmetric than that found around a single wing-tip vortex.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3