Three-dimensional instability of Burgers and Lamb–Oseen vortices in a strain field

Author:

ELOY CHRISTOPHE,LE DIZÈS STÉPHANE

Abstract

The linear stability of Burgers and Lamb–Oseen vortices is addressed when the vortex of circulation Γ and radius δ is subjected to an additional strain field of rate s perpendicular to the vorticity axis. The resulting non-axisymmetric vortex is analysed in the limit of large Reynolds number RΓ=Γ/v and small strain s[Lt ]Γ2 by considering the approximations obtained by Moffatt et al. (1994) and Jiménez et al. (1996) for each case respectively. For both vortices, the TWMS instability (Tsai & Widnall 1976; Moore & Saffman 1975) is shown to be active, i.e. stationary helical Kelvin waves of azimuthal wavenumbers m=1 and m=−1 resonate and are amplified by the external strain in the neighbourhood of critical axial wavenumbers which are computed. The additional effects of diffusion for the Lamb–Oseen vortex and stretching for the Burgers vortex are proved to limit in time the resonance. The transient growth of the helical waves is analysed in detail for the distinguished scaling sΓ/ (δ2R1/2Γ). An amplitude equation describing the resonance is obtained and the maximum gain of the wave amplitudes is calculated. The effect of the vorticity profile on the instability characteristic as well as of a time-varying stretching rate are analysed. In particular the stretching rate maximizing the instability is calculated. The results are also discussed in the light of recent observations in experiments and numerical simulations. It is argued that the Kelvin waves resonance mechanism could explain various dynamical behaviours of vortex filaments in turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3