A laboratory study of baroclinic waves and turbulence in an internally heated rotating fluid annulus with sloping endwalls

Author:

BASTIN MARK E.,READ PETER L.

Abstract

New laboratory experiments have been performed in a rotating fluid annulus, subject to internal heating and sidewall cooling, in which a radial depth gradient has been created by the inclusion of oppositely sloping boundaries. Endwall configurations that cause the fluid depth (D) to increase with radius (∂D/∂r>0) and to decrease with radius (∂D/∂r<0) have been studied, as the former is applicable to the terrestrial atmosphere and oceans, while the latter may be relevant to deep atmospheres such as those of the giant planets.Even with the steepest boundary slopes, isolated or periodic chains of stable coherent eddies are observed with both endwall configurations, and these regular eddy modes are seen to drift relative to the walls of the convection chamber concordant with simple Rossby wave ideas. When the boundary slope (δ) is small, no difference is observed in the range of azimuthal wavenumbers seen in the regular wave regimes of the two endwall configurations. At larger values of δ, however, this symmetry is lost, since regular modes m=2 to 8 are observed with ∂D/∂r>0 endwalls, while only a large vertically trapped anticyclonic gyre is seen with ∂D/∂r<0 endwalls. The other effects of the radial depth gradient are the observed reduction in both the lateral and vertical scale of the eddy features, and the formation of two independent trains of eddies within the gap width at sufficiently high rotation rates in the ∂D/∂r>0 endwall experiments. The zonal mean flow is also found to develop a significant barotropic component, superimposed on the vertically and horizontally sheared zonal jets generated by the non-monotonic thermal gradient of the experiment. This barotropic component is predominantly prograde (retrograde) in the ∂D/∂r>0 (∂D/∂r<0) endwall experiments, and confined close to the outer (inner) wall where the fluid depth is greatest.There is evidence of the formation of increased numbers of zonal jets in the ∂D/∂r>0 endwall experiments above that expected from the form of the thermal forcing. These multiple zonal jets are highly localized in the vertical, and are trapped close to the top boundary. Their radial scale is, nevertheless, close to that given by the Rhines argument. No comparable increase in the radial wavenumber of the mean flow is observed in the ∂D/∂r<0 endwall experiments in the present system.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3