Abstract
The velocity field generated in a fluid of viscosity, v, by impulsively starting at time t = 0, a sphere of radius a spinning with angular velocity Ω about a diameter is described using a new expansion variable 2 √vt/r. It is first shown how the standard time-dependent boundary-layer equations can be modified to give series solutions satisfying all the boundary conditions. Next, that these new solutions are relevant when the Reynolds number R = a2Ω/v goes to infinity in such a way that $R^{\frac{1}{3}} \Omega t$ is large. Lastly, solutions are given, applicable at small times for non-zero Reynolds numbers. These last expansions show that the velocity components decay algebraically rather than exponentially at large distances.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献