Ignition in the supersonic hydrogen/air mixing layer with reduced reaction mechanisms

Author:

Im H. G.,Helenbrook B. T.,Lee S. R.,Law C. K.

Abstract

Asymptotic analysis of ignition within the supersonic hydrogen/air mixing layer is performed using reduced mechanisms. Two distinct reduced mechanisms for the high-temperature and the low-temperature regimes are used depending on the characteristic temperature of the reaction zone relative to the crossover temperature at which the reaction rates of the H + 02 branching and termination steps are equal. Each regime further requires two distinct analyses for the hot-stream and the viscous-heating cases, depending on the relative dominance of external and internal ignition energy sources. These four cases are analysed separately, and it is shown that the present analysis successfully describes the ignition process by exhibiting turning point or thermal runaway behaviour in the low-temperature regime, and radical branching followed by thermal runaway in the high-temperature regime. Results for the predicted ignition distances are then mapped out over the entire range of the parameters, showing consistent behaviour with the previous one-step model analysis. Furthermore, it is demonstrated that ignition in the low-temperature regime is controlled by a larger activation energy process, so that the ignition distance is more sensitive to its characteristic temperature than that in the high-temperature regime. The ignition distance is also found to vary non-monotonically with the system pressure in the manner of the well-known hydrogen/oxygen explosion limits, thereby further substantiating the importance of chemical chain mechanisms in this class of chemically reacting boundary layer flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference18 articles.

1. Abramowitz, M. & Stegun, A. 1965 Handbook of Mathematical Functions , pp.686–697.

2. Lock, R. C. 1951 The velocity distribution in the laminar boundary layer between parallel streams.Q. J. Mech. Appl. Maths 4,42.

3. Lewis, B. & Elbe, G. Vo. 1987 Combustion, Flames and Explosions of Gases ,3rd edn. Academic.

4. Marble, F. E. & Adamson, T. C. 1954 Ignition and combustion in a laminar mixing zone.Jet Propulsion 24,85.

5. Egolfopoulos, F. N. & Law, C. K. 1990 Chain mechanisms in the overall reaction orders in laminar flame propagation.Combust. Flame 80,7.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3