Abstract
We investigate the behaviour of infinitesimal perturbations introduced into an unstably stratified horizontal Couette flow. We assume that the fluid is Boussinesq and contained in an infinite conducting rectangular channel which is uniformly heated from below. The sidewalls are rigid and the Couette flow is generated by moving them with equal and opposite velocities along the channel. The top and bottom are assumed to be free so that we can separate variables.Without shear, the preferred modes of convection closely resemble transverse ‘finite rolls’ (Davies-Jones 1970). Shear increases the critical wavelength so that the preferred modes become longitudinally elongated cells, or even longitudinal rolls in some cases. The critical Rayleigh number increases quite rapidly at fist with Reynolds number, but at higher Reynolds numbers it levels off to a constant value (which cannot be greater than the shear-independent Rayleigh number at which longitudinal disturbances fist become unstable).We also find that the disturbances are tilted in the same direction as the shear, and that the marginally stable ones transfer kinetic energy from the mean flow to the perturbations. Except at low Reynolds numbers, the long wave perturbations gain more energy through the conversion of mean flow kinetic energy than through the release of potential energy, even though the instability is convective in origin.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference13 articles.
1. Deardorff, J. W. 1965 Phys. Fluids,8,1027.
2. Francis, J. G. 1962 Comput. J. 4,332.
3. Wilkinson, J. H. 1965 The Algebraic Eigenvalue Problem .Oxford:Clarendon.
4. Deardorff, J. W. 1963 J. Fluid Mech. 15,623.
5. Gallagher, A. P. & Mercer, A. McD. 1964 J. Fluid Mech. 18,350.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献