Azimuthal structure of turbulence in high Reynolds number pipe flow

Author:

BAILEY SEAN C. C.,HULTMARK MARCUS,SMITS ALEXANDER J.,SCHULTZ MICHAEL P.

Abstract

Two-point hot-wire measurements of streamwise velocity were performed in the logarithmic and wake regions of turbulent pipe flow for Reynolds numbers, based on pipe diameter, ranging from 7.6 × 104 to 8.3 × 106 at four wall-normal positions with azimuthal probe separation. The azimuthal correlations were found to be consistent with the presence of very large-scale coherent regions of low-wavenumber, low-momentum fluid observed in previous studies of wall-bounded flows and were found to be independent of changing Reynolds number and surface roughness effects. At the edge of the logarithmic layer the azimuthal scale determined from the correlations was found to be similar to that observed for channel flows but larger than that observed for boundary layers, inconsistent with the concept of a universal logarithmic region. As the wall-normal position increased outside the logarithmic layer, there was a decrease in azimuthal scale relative to that of channel flow. Using cross-spectral analysis, high-wavenumber motion was found to grow azimuthally with wall-normal distance at a faster rate than the low-wavenumber motions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3