A spectral closure for premixed turbulent combustion in the flamelet regime

Author:

Peters N.

Abstract

Premixed turbulent combustion in the flamelet regime is analysed on the basis of a field equation. This equation describes the instantaneous flame contour as an isoscalar surface of the scalar field G(x,t). The field equation contains the laminar burning velocity sL as velocity scale and its extension includes the effect of flame stretch involving the Markstein length [Lscr ] as a characteristic lengthscale of the order of the flame thickness. The scalar G(x,t) plays a similar role for premixed flamelet combustion as the mixture fraction Z(x,t) in the theory of non-premixed flamelet combustion.Equations for the mean $\overline{G}$ and variance $\overline{G^{\prime 2}}$ are derived. Additional closure problems arise for the mean source terms in these equations. In order to understand the nature of these terms an ensemble of premixed flamelets with arbitrary initial conditions in constant-density homogeneous isotropic turbulence is considered. An equation for the two-point correlation $\overline{G^{\prime}({\boldmath x},t)G^{\prime}({\boldmath x}+{\boldmath r},t)}$ is derived. When this equation is transformed into spectral space, closure approximations based on the assumption of locality and on dimensional analysis are introduced. This leads to a linear equation for the scalar spectrum function Γ(k,t), which can be solved analytically. The solution Γ(k,t) is analysed by assuming a small-wavenumber cutoff at k0 = lT−1, where lT is the integral lengthscale of turbulence. There exists a $k^{-\frac{5}{3}}$ spectrum between lT and LG, where LG is the Gibson scale. At this scale turbulent fluctuations of the scalar field G(x,t) are kinematically restored by the smoothing effect of laminar flame propagation. A quantity called kinematic restoration ω is introduced, which plays a role similar to the scalar dissipation χ for diffusive scalars.By calculating the appropriate moments of Γ(k,t), an algebraic relation between ω, $\omega,\overline{G^{\prime}({\boldmath x},t)^2}$, the integral lengthscale lT and the viscous dissipation ε is derived. Furthermore, the scalar dissipation χ[Lscr ], based on the Markstein diffusivity [Dscr ][Lscr ] = sL [Lscr ], and the scalar-strain co-variance Σ[Lscr ] are related to ω. Dimensional analysis, again, leads to a closure of the main source term in the equation for the mean scalar $\overline{G}$. For the case of plane normal and oblique turbulent flames the turbulent burning velocity sT and the flame shape is calculated. In the absence of flame stretch the linear relation sTu′ is recovered. The flame brush thickness is of the order of the integral lengthscale. In the case of a V-shaped flame its increase with downstream position is calculated.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference40 articles.

1. Wu, M.-S. , Kwon, S. , Driscoll, J. F. & Faeth, G. M. 1991 Preferential diffusion effects on the surface structure of turbulent premixed hydrogen/air flames.Combust. Sci. Technol. 78,69–96.

2. Bray, K. N. C. , Champion, M. & Libby, P. A. 1988 Mean reaction rates in premixed turbulent flames In 22nd Symp. (Intl) on Combustion ,pp.763–769.The Combustion Institute.

3. Cant, R. S. & Bray, K. N. C. 1989 A theoretical model of premixed turbulent combustion in closed vessels.Combust. Flame 76,243–263.

4. Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities.J. Fluid Mech. 124,239–259.

5. Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence .Cambridge University Press.

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3