Mixing of a viscoelastic fluid in a time-periodic flow

Author:

Niederkorn T. C.,Ottino J. M.

Abstract

We present an experimental and computational investigation of mixing of a viscoelastic fluid in two-dimensional time-periodic flows generated in an eccentric cylindrical geometry. The objective of the study is to investigate the impact of fluid elasticity on the morphological structures produced by the advection of passive tracers in chaotic flows. The relevant dimensionless numbers that quantify the rheological differences with respect to the Newtonian fluid are the Deborah number (De), defined as the ratio of the fluid timescale to the flow timescale, and the Weissenberg number (We), defined as the product of the fluid timescale and the mean shear rate. The effects of elasticity are investigated in the limit of slow flows, De ≈ 0 and We < 0.1. The experimental window of We is limited to Newtonian behaviour on the low end and the transition to three-dimensional flow on the high end; experiments show that this window is small, 0.02 < We < 0.1. Typical values of the Reynolds number and the Strouhal number are O(0.001) and O(0.1), respectively.Results from experiments with a constant-viscosity elastic fluid and computations using the upper-convected Maxwell constitutive equation are presented. Even though the streamlines for the elastic flow are nearly indistinguishable from the Newtonian flow, small deviations in the velocity field produce large effects on chaotically advected patterns. Elasticity affects both the asymptotic coverage of a dyed passive tracer and the rate at which the tracer is stretched. In all cases the tracer undergoes exponential stretching, but on a longer timescale as the elasticity increases. According to flow conditions, elasticity might increase or decrease the degree of regularity; however, island symmetry does not seem to be affected. Similar phenomena are observed in both the experiments and computations; therefore, an analysis of the chaotic dynamics of the periodic flow using numerical techniques is possible.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. Swanson, P. D. & Ottino, J. M. 1990 A comparative computational and experimental study of chaotic mixing of viscous fluids.J. Fluid Mech. 213,227–249.

2. Phan-Thien, N. & Tanner, R. I. 1977 A new constitutive equation derived from network theory.J. Non-Newtonian Fluid Mech. 2,353–365.

3. Crochet, M. J. , Davies, A. R. & Walters, K. 1984 Numerical Simulation of Non-Newtonian Flow .Elsevier.

4. Phelan, F. R. , Malone, M. F. & Winter, H. H. 1989 A purely hyperbolic model for unsteady viscoelastic flow.J. Non-Newtonian Fluid Mech. 32,197–224.

5. Leong, C.-W. & Ottino, J. M. 1989 Experiments on mixing due to chaotic advection in a cavity.J. Fluid Mech. 209,463–499.

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3