Wall shear stress caused by small amplitude perturbations of turbulent boundary-layer flow: an experimental investigation

Author:

Ronneberger D.,Ahrens C. D.

Abstract

The oscillation of the wall shear stress caused by imposing sound on a turbulent boundary-layer flow constitutes a boundary condition for the solution of the acoustic wave equation. The no-slip condition at the wall requires the excitation of a shear wave which is superimposed on the sound wave. The shear wave propagates into the turbulent medium. The wall impedance (shear stress/velocity) of streamwise polarized shear waves has been measured in two different ways, namely (a) by evaluating the phase velocity and the attenuation of a plane sound, wave which propagates in turbulent pipe flow, and (b) by evaluating the resonance frequency and the quality factor of a longitudinally vibrating glass pipe which carries turbulent flow. The results, which were obtained over a wide range of Strouhal numbers, exhibit very good agreement between the two measuring methods. The wall shear stress impedance is strongly affected by the turbulence. This indicates that the turbulent shear stress is modulated by the shear wave. At all measuring conditions, the propagation of the shear wave was confined essentially to the inner portion of the turbulent boundary layer. In principle, two different Strouhal numbers, based on inner and outer variables respectively, describe the dynamics of the Reynolds stress, even in the inner layer (Laufer & Badri Narayanan 1971). However, it turns out that the outer Strouhal number (based on the diameter and the centre-line velocity) has no noticeable effect on the wall shear stress impedance. The dependence of the impedance on the inner Strouhal number (based on the friction velocity and the viscosity) reveals that the shear wave is strongly reflected at the edge of the viscous sublayer. It is concluded that the stress-to-strain ratio at the edge of the viscous sublayer corresponds either to a viscoelastic medium or even to a medium with negative viscosity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Eckelmann, H. 1970 Experimentelle Untersuchungen in einer turbulenten Kanalströmung mit starken viskosen Wandschichten.Mitt. MPI Strömungsforsch. AVA Göttingen no. 48.

2. Ahrens, C. & Ronneberger, D. 1971 Luftschalldämpfung in turbulent durchströmten, schallharten Rohren bei verschiedenen Wandrauhigkeiten.Acustica 25,150.

3. Driest, E. R. Van 1956 On turbulent flow near a wall.J. Aero. Sci. 23,1007.

4. Ahrens, C. 1973 Wechselwirkung zwischen Zähigkeitswellen und wandnaher Turbulenz in Wasser mit und ohne Zusatz einer reibungsvermindernden Substanz. Ph.D. dissertation,Math.-Nat. Fakultät Universität Göttingen.

5. Norris, H. L. & Reynolds, W. C. 1975 Turbulent channel flow with a moving wavy boundary.Dept. Mech. Engng, Stanford Univ. Rep. TF-7.

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3