Bubble rise in a liquid with a surfactant gas, in particular carbon dioxide

Author:

HARPER J. F.

Abstract

When a gas bubble rises in a surfactant solution, the velocity field and the distribution of surfactant affect each other. This paper gives the theory for small Reynolds and internal Péclet numbers if the surfactant is gaseous or volatile, if its mass flux across the bubble and around its surface dominates its mass flux through the bulk liquid, and if slowness of both adsorption and convective diffusion must be allowed for.The theory is tested on the experiments of Kelsall et al. (J. Chem. Soc. Faraday Trans., vol. 92, 1996, p. 3879). Their bubbles rose as expected in a pure liquid until the apparatus was opened to the atmosphere. That significantly slowed the bubbles down. The effect is so sensitive to small concentrations of slowly adsorbing or reacting surfactants that atmospheric carbon dioxide could have caused it, even though it alters the equilibrium surface tension by less than four parts per million in pure air.There are still unexplained discrepancies between experiment and theory. Additional experiments are suggested that would help to explain them.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3