Numerical solutions for the spin-up of a stratified fluid

Author:

Hyun Jae Min,Fowlis William W.,Warn-Varnas Alex

Abstract

Numerical solutions for the impulsively started spin-up of a thermally stratified fluid in a cylinder with an insulating side wall are presented. Previous experimental and numerical work on stratified spin-up had not provided a comprehensive and accurate set of flow-field data. Further, comparisons of this work with theory showed, in general, a substantial discrepancy. The theory was scaled using the homogeneous meridional-flow spin-up time scale and thus viscous-diffusion effects were excluded from the interior. It was anticipated that these effects could only be significant on the larger viscous-diffusion time scale. However, the comparisons with theory showed a faster rate of decay for the measurements even over the shorter meridional-flow spin-up time scale. Previous workers had suggested a number of explanations but the cause of the discrepancy was still unresolved. To provide data to extend the previous work, a numerical model was used. The model was first checked against accurate experimental measurements of stratified spin-up made using a laser-Doppler velocimeter. New accurate results which cover ranges of Ekman number (5·92 × 10−4E ≤ 7·24 × 10−4), Rossby number (0·019 ≤ ε ≤ 0·220), stratification parameter (0·0 ≤ Sa−1 ≤ 1·03), and Prandtl number (5·68 ≤ σ ≤ 7·10) are presented. These results show the radial and vertical structure of the decaying azimuthal and meridional flows. The inertial–internal gravity oscillations excited by the impulsive spin-up are clearly seen. By making use of conclusions from the previous work and the results presented in this paper, it is established that viscous diffusion in the interior is the cause of the discrepancy with theory. Stratification causes the meridional spin-up flow to be confined closer to the boundary disks. This results in non-uniform spin-up of the interior and hence flow gradients in the interior. These gradients introduce viscous diffusion into the interior sooner than anticipated by the theory. A previous suggestion that the faster decay rate is due to angular momentum being injected into the interior from an oscillation of the meridional corner-jet flow is shown to be untenable.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference14 articles.

1. Wachpress, E. L. 1966 Iterative Solutions of Elliptic Systems .Prentice-Hall.

2. Sakurai, T. 1969 Spin-down problem of rotating stratified fluid in thermally insulated circular cylinders.J. Fluid Mech. 37,689.

3. Lee, S. M. 1975 An investigation of stratified spin-up using a rotating laser — Doppler velocimeter. M.S. thesis,Florida State University.

4. Holton, J. R. 1965 The influence of viscous boundary layers on transient motions in a stratified rotating fluid.J. Atmos. Sci. 22,402.

5. Buzyna, G. & Veronis, G. 1971 Spin-up of a stratified fluid.J. Fluid Mech. 50,579.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3