General theory for the creeping motion of a finite sphere along the axis of a circular orifice

Author:

Dagan Z.,Weinbaum S.,Pfeffer R.

Abstract

This paper presents the first infinite-series solutions to the creeping-flow equations for the axisymmetric motion of a sphere of arbitrary size towards an orifice whose diameter is either larger or smaller than the sphere. To obtain the solution the flow field is partitioned in the plane of the opening, and for the flow to the left and right of the fluid interface separate solutions are developed that satisfy the viscous-flow boundary conditions in each region and unknown functions for the axial and radial velocity components in the plane of the opening. The continuity of the fluid stress tensor at the matching interface leads to a set of dual integral equations which are solved analytically to determine the unknown functions for the velocity components in the matching plane. A boundary collocation technique is used to satisfy the no-slip boundary conditions on the surface of the sphere.The accuracy and convergence of the present solution is tested by detailed numerical comparison with the exact bipolar co-ordinate solutions of Brenner (1961) for the drag on a sphere translating perpendicular to an infinite plane wall up to a distance of 0·1 sphere radii and is found to be in agreement to five significant digits. The converged-series collocation solutions are presented for the sphere in motion in quiescent fluid or for flow past a rigidly held sphere positioned axisymmetrically near a fixed orifice. Solutions are also presented for the zero-drag velocity of a neutrally buoyant sphere in a flow through an orifice, and the pressure–volume flow relation for a ball-valve geometry.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference18 articles.

1. Ganatos, P. , Weinbaum, S. & Pfeffer, R. 1980 J. Fluid Mech. 99,739.

2. Dagan, Z. , Weinbaum, S. & Pfeffer, R. 1982 J. Fluid Mech. 115,505–523.

3. Tranter, C. J. 1951 Quart. J. Math. 2,60.

4. Leichtberg, S. , Pfeffer, R. & Weinbaum, S. 1976 Int. J. Multiphase Flow 3,147.

5. Haberman, W. L. & Sayre, R. M. 1958 David W. Taylor Model Basin Rep. no. 1143, Washington, D.C.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3