Observations of purely elastic instabilities in the Taylor–Dean flow of a Boger fluid

Author:

Joo Yong Lak,Shaqfeh Eric S. G.

Abstract

An experimental and theoretical investigation of the stability of the viscoelastic flow of a model Boger fluid between rotating cylinders with an applied pressure gradient is presented. In our theoretical study, a linear stability analysis based on the Oldroyd-B fluid model which predicts the critical conditions and the structure of the vortex flow at the onset of instability is developed. Our results reveal that certain non-axisymmetric modes are more unstable than the previously studied axisymmetric mode when the shearing by the cylinder rotation is the dominant flow-driving force. This is consistent with recent results presented by Beris & Avgousti (1992) on the stability of elastic Taylor–Couette flow. On the other hand, the axisymmetric mode is more unstable when the pressure gradient becomes dominant. Furthermore, we investigate the mechanism of purely elastic Taylor–Dean instability with respect to non-axisymmetric disturbances through an examination of the disturbance-energy equation. It is found that the mechanism of the elastic Taylor–Dean instability is associated with the coupling between the disturbance polymeric stresses due to the azimuthal variation of the disturbance flow and the base state velocity gradients. In our experimental study, evidence of non-inertial, cellular instabilities in the Taylor–Dean flow of a well-characterized polyisobutylene/polybutene Boger fluid is presented. A stationary, meridional obstruction is placed between independently rotating, concentric cylinders to generate an azimuthal pressure gradient in opposition to the shearing flow. Flow visualization experiments near the critical conditions show the transition from purely azimuthal flows to secondary vortex flows, and the development of evenly spaced, banded vortex structures. The critical wavenumber obtained from spectral image analysis of the visualizations, and the critical Deborah number are presented for various ratios of the pressure gradient to the shear driving force. Although there is a quantitative discrepancy between data and theory, the qualitative trends in the data are in agreement with our theoretical predictions. In addition, laser-Doppler velocimetry (LDV) measurements show that the instability is a stationary mode when the pressure gradient is the dominant flow-driving force, while it is an oscillatory instability when the shearing is dominant, again as predicted by the theory.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference33 articles.

1. DiPrima, R. C. 1959 The stability of viscous flow between rotating concentric cylinders with a pressure gradient acting around the cylinder.J. Fluid Mech. 6,462–468.

2. Joo, Y. L. & Shaqfeh, E. S. G. 1991 Viscoelastic Poiseuille flow through a curved channel: a new elastic instability.Phys. Fluids A 3,1691–1694.

3. Chandrasekar, S. 1961 Hydrodynamic Stability .Clarendon Press,Oxford.

4. Mackay, M. E. & Boger, D. V. 1987 An explanation of the rheological properties of Boger fluids.J. Non-Newtonian Fluid Mech. 22,235–243.

5. McKinley, G. H. , Raiford, W. P. , Brown, R. A. & Armstrong, R. C. 1991b Nonlinear dynamics of viscoelastic flow in axisymmetric abrupt contractions.J. Fluid Mech. 223,411–56.

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3