Drag and lift forces acting on a spherical water droplet in homogeneous linear shear air flow

Author:

SUGIOKA KEN-ICHI,KOMORI SATORU

Abstract

Drag and lift forces acting on a spherical water droplet in a homogeneous linear shear air flow were studied by means of a three-dimensional direct numerical simulation based on a marker and cell (MAC) method. The effects of the fluid shear rate and the particle (droplet) Reynolds number on drag and lift forces acting on a spherical droplet were compared with those on a rigid sphere. The results show that the drag coefficient on a spherical droplet in a linear shear flow increases with increasing the fluid shear rate. The difference in the drag coefficient between a spherical droplet and a rigid sphere in a linear shear flow never exceeds 4%. The lift force acting on a spherical droplet changes its sign from a positive to a negative value at a particle Reynolds number of Rep ≃ 50 in a linear shear flow and it acts from the high-speed side to the low-speed side for Rep ≥ 50. The behaviour of the lift coefficient on a spherical droplet is similar to that on a stationary rigid sphere and the change of sign is caused by the decrease of the pressure lift. The viscous lift on a spherical droplet is smaller than that on a rigid sphere at the same Rep, whereas the pressure lift becomes larger. These quantitative differences are caused by the flow inside a spherical droplet.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3