Author:
SUGIOKA KEN-ICHI,KOMORI SATORU
Abstract
Drag and lift forces acting on a spherical water droplet in a homogeneous linear shear air flow were studied by means of a three-dimensional direct numerical simulation based on a marker and cell (MAC) method. The effects of the fluid shear rate and the particle (droplet) Reynolds number on drag and lift forces acting on a spherical droplet were compared with those on a rigid sphere. The results show that the drag coefficient on a spherical droplet in a linear shear flow increases with increasing the fluid shear rate. The difference in the drag coefficient between a spherical droplet and a rigid sphere in a linear shear flow never exceeds 4%. The lift force acting on a spherical droplet changes its sign from a positive to a negative value at a particle Reynolds number of Rep ≃ 50 in a linear shear flow and it acts from the high-speed side to the low-speed side for Rep ≥ 50. The behaviour of the lift coefficient on a spherical droplet is similar to that on a stationary rigid sphere and the change of sign is caused by the decrease of the pressure lift. The viscous lift on a spherical droplet is smaller than that on a rigid sphere at the same Rep, whereas the pressure lift becomes larger. These quantitative differences are caused by the flow inside a spherical droplet.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献