Author:
SÁNCHEZ-SANZ M.,VELAZQUEZ A.
Abstract
In this article, we study the influence of solid-to-fluid density ratio m on the type of vortex-induced oscillation of a square section prism placed inside a two-dimensional channel. We assume that the solid body has neither structural damping nor spring restoring force. Accordingly, the prism equation of motion contains only inertia and aerodynamics forces. The problem is considered in the range of Reynolds numbers Re ∈ [50 200] (based on the prism cross-section height h) and channel widths H = H′/h ∈ [2.5 10]. We found that, for each Re and H, there is a critical mass ratio mc that separates two different oscillation regimes. For m > mc, the prism oscillation is periodical and contains a single harmonic. For m < mc, the prism oscillation changes completely and assumes an irregular pattern that is characterized by multiple harmonics that appear to belong to a uniform spectrum. The change from one regime to the other is abrupt and we were not able to observe a transitional regime in which the number of response harmonics grew by finite steps. The value of the critical mass ratio grows along with the Reynolds number and the channel width.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献