The initial region of subsonic coaxial jets. Part 2

Author:

Kwan A. S. H.,Ko N. W. M.

Abstract

Earlier investigations by the authors have suggested that coherent structures, in the form of two different arrays of vortices, exist in the initial region of coaxial jets. The present investigation was aimed at obtaining further information on the characteristics of the vortices in coaxial jets. Single- and two-point correlation covariance measurements of the fluctuating pressure and the axial and radial velocity fluctuations have been made in the initial region of coaxial jets. Detailed analysis of the correlograms indicates the combined effect of the two vortex trains on the correlograms. Further, the analysis enables the phase relationship between the pressure and axial and radial velocity fluctuations to be obtained. From the correlation results the phase properties obtained within the whole initial region of coaxial jets are found to agree with the results for single jets. This good agreement supports the formally suggested simple approach to the understanding of the complicated flow in coaxial jets.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of varying velocity ratio and separation distance on thin lip coaxial jet;Aircraft Engineering and Aerospace Technology;2023-01-11

2. Mach number variation in subsonic co-flowing jets;5TH INTERNATIONAL CONFERENCE ON INNOVATIVE DESIGN, ANALYSIS & DEVELOPMENT PRACTICES IN AEROSPACE & AUTOMOTIVE ENGINEERING: I-DAD’22;2023

3. Lip thickness effect on high bypass co-flowing jet mixing;Aircraft Engineering and Aerospace Technology;2022-04-20

4. Heat Transfer From a Heated Flat Surface Due to Swirling Coaxial Turbulent Jet Impingement;Journal of Thermal Science and Engineering Applications;2020-07-14

5. Mixing in turbulent compressible heated coaxial jets: A numerical study;International Journal of Hydrogen Energy;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3