Author:
HUPPERT HERBERT E.,HALLWORTH MARK A.
Abstract
We consider the exchange flow of relatively dense, viscous fluid in a container connected by a vertical pipe to a container beneath it, initially full of relatively light fluid. A non-dimensional value for the flux of dense fluid down the tube is determined experimentally as a function of the ratio of the two viscosities and the Reynolds number. The experimental data are satisfactorily collapsed using dimensional analysis and balancing buoyancy, inertial and viscous forces as appropriate. A theoretical analysis, assuming steady, axisymmetric motion, captures a considerable part, but not all of the processes involved. The paper discusses quantitative applications of the results to the movement of magma in volcanic conduits. The concepts indicate how bi-directional convection in the conduit between a lava lake and a magma reservoir deep in the crust is the essential ingredient in the explanation of the long-standing problem that the amount of degassing of sulphur dioxide from a lava lake in a volcanic crater can exceed by many orders of magnitude that consistent with the amount of lava solidified in the crater. Movies are available with the online version of the paper.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献