Abstract
A recent experiment has shown ‘inverted drafting’ in flags: the drag force on one flag is increased by excitation from the wake of another. Here we use vortex sheet simulations to show that inverted drafting occurs when the flag wakes add coherently to form strong vortices. By contrast, normal drafting occurs for higher frequency oscillations, when the vortex wake becomes more complex and mixed on the scale of the flag. The types of drafting and dynamics (synchronization and erratic flapping) depend on the separation distance between the flags. For both tandem and side-by-side flags in synchronized flapping, the phase difference depends nearly monotonically on separation distance.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献