Leading-edge effects in bypass transition

Author:

NAGARAJAN S.,LELE S. K.,FERZIGER J. H.

Abstract

The effect of a blunt leading edge on bypass transition is studied by numerical simulation. A mixed direct and large-eddy simulation of a flat plate with a super-ellipse leading edge is carried out at various conditions. Onset and completion of transition is seen to move upstream with increasing bluntness. For sharper leading edges, at lower levels of turbulence, transition usually occurs through instabilities on low-speed streaks as observed by Jacobs & Durbin (2001) and Brandt et al. (2004) whereas increasing either the turbulence intensity or the leading-edge bluntness brings into play another mechanism. Free-stream vortices are amplified at the leading edge because of stretching. In the case of particularly strong vortices, this interaction induces a localized streamwise vortical disturbance in the boundary layer which then grows as it convects downstream and eventually breaks down to form a turbulent spot. These disturbances, which are localized and hence wavepacket-like, move at speeds in the range 0.55 U–0.65 U and occur in the lower portion of the boundary layer. Simulations conducted with isolated vortices confirm such a response of the boundary layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3