A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop

Author:

MORTAZAVI SAEED,TRYGGVASON GRÉTAR

Abstract

The cross-stream migration of a deformable drop in two-dimensional Hagen–Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (< 1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For viscosity ratio 0.125 a drop moves toward the centre of the channel, while for ratio 1.0 it moves away from the centre until halted by wall repulsion. The rate of migration increases with the deformability of the drop. At higher Reynolds numbers (5–50), the drop either moves to an equilibrium lateral position about halfway between the centreline and the wall – according to the so-called Segre–Silberberg effect or it undergoes oscillatory motion. The steady-state position depends only weakly on the various physical parameters of the flow, but the length of the transient oscillations increases as the Reynolds number is raised, or the density of the drop is increased, or the viscosity of the drop is decreased. Once the Reynolds number is high enough, the oscillations appear to persist forever and no steady state is observed. The numerical results are in good agreement with experimental observations, especially for drops that reach a steady-state lateral position. Most of the simulations assume that the flow is two-dimensional. A few simulations of three-dimensional flows for a modest Reynolds number (Re = 10), and a small computational domain, confirm the behaviour seen in two dimensions. The equilibrium position of the three-dimensional drop is close to that predicted in the simulations of two-dimensional flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3