Axisymmetric convection at large Rayleigh and infinite Prandtl number

Author:

Umemura Akira,Busse F. H.

Abstract

A matched-asymptotic analysis has been carried out for an axisymmetric convection cell in the case of stress-free boundaries. This problem differs from that of two-dimensional convection rolls mainly through the special role played by the central plume. The radius, of order ε, of the latter depends on the Rayleigh number R through the relationship $\epsilon^4(-\ln \epsilon) = R^{\frac{2}{3}}$. The plume velocity is independent of height at lowest order and its magnitude exceeds by a factor (− ln ε)½ the strength, of order $R^{\frac{2}{3}}$, of the core flow. As a result of these properties the central plume is governed by advection, in contrast to the perimeter plume which is affected by conduction as well. This asymmetry is reflected in the different thickness of the horizontal thermal boundary layers and gives rise to the deviation of the core temperature from the mean value of the top and bottom temperatures. This deviation is positive (negative) for the case of a falling (rising) central plume. While the core flow is driven mainly by the perimeter plume the fraction of the heat flux carried by the central plume is always above three-quarters and increases as the radius-to-height-ratio λ decreases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference10 articles.

1. Jones, C. A. , Moore, D. R. & Weiss, N. O. 1976 J. Fluid Mech. 73,353.

2. Batchelor, G. K. 1956 J. Fluid Mech. 1,177.

3. Busse, F. H. 1983 Geophys. Res. Lett. 10,285.

4. Machetel, P. & Yuen, D. A. 1988 Mathematical Geophysics , (ed. N. J. Vlaar , G. Nolet , M. J. R. Wortel & S. A. P. L. Cloetingh ), p.265.D. Reidel.

5. Olson, P. 1987 Phys. Earth Planet. Inter. 36,337.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3