Source–sink turbulence in a rotating stratified fluid

Author:

Linden P. F.,Boubnov B. M.,Dalziel S. B.

Abstract

In a recent paper Boubnov, Dalziel & Linden (1994) described the response of a stratified fluid to forcing produced by an array of sources and sinks. The sources and sinks were located in a horizontal plane and the flow from the sources was directed horizontally so that fluid was withdrawn from, and re-injected at, its own density level. As a result vertical vorticity was imparted to the fluid with a minimum of vertical mixing. It was found that when the stratification was strong enough to suppress vertical motions an inverse energy cascade was observed leading to the establishment of a large-scale circulation in the fluid. Those experiments were restricted to eight source-sink pairs. The present paper extends this work in two ways. First, up to forty source-sink pairs are used to force the flow, thereby producing a much wider separation of scales between the forcing and the flow domain. An inverse cascade is again found, but in this case the energy transfer to large scales is more rapid. The basic pattern of the large-scale flow is independent of the number of sources but the detailed structure depends on the energy input scale. Second, the effects of rotation about a vertical axis are investigated. It is found that when the Rossby deformation radius exceeds the size of the flow domain, the inverse energy cascade still occurs. However, for smaller values of the deformation scale, which in these experiments are comparable to or smaller than the forcing scale, the inverse cascade is altered by baroclinic instability. When flow structures develop on a scale larger than the deformation scale, usually by the merging of vortices of like sign, these structures are observed to split into smaller vortices of a scale comparable to the deformation scale. The flow appears to evolve with a balance between an anticascade produced by the two-dimensionality of the flow and a cascade due to baroclinic instability. For Rossby radii much smaller than the domain size the flow evolves into finite clumps of vorticity and an asymmetry between anticyclones and cyclones develops. A predominance of coherent anticyclones is observed, and the cyclonic vorticity is contained in more diffuse structures.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference15 articles.

1. Griffiths, R. W. & Hopfinger, E. J. 1984 The structure of mesoscale turbulence and horizontal spreading at ocean fronts.Deep-Sea Res. 31,245–269.

2. Colin de Verdierr, A. 1980 Quasi-geostrophic turbulence in a rotating homogeneous fluid.Geophys. Astrophys. Fluid Dyn. 15,213–251.

3. Griffiths, R. W. & Linden, P. F. 1985 Intermittent baroclinic instability and fluctuations in geophysical circulations.Nature 316,801–803.

4. Dalziel, S. B. 1992 Decay of rotating turbulence: some particle tracking experiments.J. Appl. Sci. Res. 49,217–244.

5. Metais, P. , Riley, J. J. & Lesieur, M. 1994 Numerical simulations of stably-stratified rotating turbulence. In Stably-Stratified Flows - Flow and Dispersion over Topography (ed. I. P. Castro & N. J. Rockliff ).IMA Conference Series.Oxford University Press.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3