Linear stability analysis of channel inception: downstream-driven theory

Author:

IZUMI NORIHIRO,PARKER GARY

Abstract

A linear stability analysis of incipient channellization on hillslopes is performed using the shallow-water equations and a description of the erosion of a cohesive bed. The base state consists of a laterally uniform Froude-subcritical sheet flow down a smooth, downward-concave hillslope profile. The downstream boundary condition consists of the imposition of a Froude number of unity. The process of channellization is thus driven from the downstream end. The flow and bed profiles describe a base state that migrates at constant, slow speed in the upstream direction due to bed erosion. Transverse perturbations corresponding to a succession of parallel incipient channels are introduced. It is found that these perturbations grow in time, so describing incipient channellization, only when the characteristic spacing between incipient channels is on the order of 6–100 times the Froude-critical depth divided by the resistance coefficient. The characteristic wavelength associated with maximum perturbation growth rate is found to scale as 10 times the Froude-critical depth divided by the resistance coefficient. Evaluating the friction coefficient as on the order of 0.01, an estimate of incipient channel spacing on the order of 1000 times the Froude-critical depth is obtained. The analysis reveals that downstream-driven channellization becomes more difficult as (a) the critical shear stress required to erode the bed becomes so large that it approaches the Froude-critical shear stress reached at the downstream boundary and (b) the Froude number of the subcritical equilibrium flow attained far upstream approaches unity. Alternative mechanisms must be invoked to explain channellization on slopes high enough to maintain Froude-supercritical sheet flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3