Some aspects of the fluid dynamics of laser welding

Author:

Dowden John,Davis Michael,Kapadia Phiroze

Abstract

When a laser beam is used as the energy source for welding two pieces of metal together, a hole is formed perpendicular to the plane of the workpiece. The latter is moved relative to the laser and metal is transferred from the front to the rear by fluid flow round the hole. The equations governing the process are set out and the conditions at the two boundaries in the problem (one between the hole and the molten metal, and the other between the liquid and the solid states of the metal) are considered.Approximate solutions of the problem for low welding speeds are obtained for four different models. The first is one in which the viscosity is taken to be constant. In the second, the viscosity is allowed to depend linearly on temperature. The third model divides the liquid into a region in which the cooler part is taken to be viscous and the hotter part inviscid; the fourth model is then constructed as a limit, with the liquid motion considered as wholly inviscid. It is found that the motion is not irrotational in this last model. The models all display a downstream displacement of the boundary between the solid and liquid states, in agreement with observations. An expression for the minimum power of the laser is calculated.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. Pirri, A. N. , Root, R. G. & Wu, P. K. S. 1978 Plasma energy transfer to metal surfaces irradiated by pulsed lasers A.I.A.A. J. 16,1296–1304.

2. Ol'Shanskii, N. A. 1974 Movement of molten metal during electron-beam welding Svar. Proiz. 9,12–14.

3. Tayler, A. B. 1975 The mathematical formulation of Stefan problems. In Moving boundary problems in heat flow and diffusion (ed. J. R. Ockendon & W. R. Hodgkin ),pp.120–137.Clarendon.

4. Malmuth, N. D. 1976 Temperature field of a moving point-source with change of state Int. J. Heat Mass Transfer 19,349–354.

5. Duley, W. W. 1976 CO2 Lasers: Effects and Applications .Academic.

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3