Abstract
A numerical method is described which is suitable for solving the equations governing the steady motion of a viscous fluid through a slightly curved tube of circular cross-section but which is also applicable to the solution of any problem governed by the steady two-dimensional Navier–Stokes equations in the plane polar co-ordinate system. The governing equations are approximated by a scheme which yields finite-difference equations which are of second-order accuracy with respect to the grid sizes but which have associated matrices which are diagonally dominant. This makes them generally more amenable to solution by iterative techniques than the approximations obtained using standard central differences, while preserving the same order of accuracy.The main object of the investigation is to obtain numerical results for the problem of steady flow through a curved tube which corroborate previous numerical work on this problem in view of a recent paper (Van Dyke 1978) which tends to cast doubt on the accuracy of previous calculations at moderately high values of the Dean number; this is the appropriate Reynolds-number parameter in this problem. The present calculations tend to verify the accuracy of previous results for Dean numbers up to 5000, beyond which it is difficult to obtain accurate results. Calculated properties of the flow are compared with those obtained in previous numerical work, with the predictions of boundary-layer theory for large Dean numbers and with the predictions of Van Dyke (1978).
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献