Bénard–Marangoni convection at low Prandtl number

Author:

BOECK THOMAS,THESS ANDRÉ

Abstract

Surface-tension-driven Bénard convection in low-Prandtl-number fluids is studied by means of direct numerical simulation. The flow is computed in a three-dimensional rectangular domain with periodic boundary conditions in both horizontal directions and either a free-slip or no-slip bottom wall using a pseudospectral Fourier–Chebyshev discretization. Deformations of the free surface are neglected. The smallest possible domain compatible with the hexagonal flow structure at the linear stability threshold is selected. As the Marangoni number is increased from the critical value for instability of the quiescent state to approximately twice this value, the initially stationary hexagonal convection pattern becomes quickly time-dependent and eventually reaches a state of spatio-temporal chaos. No qualitative difference is observed between the zero-Prandtl-number limit and a finite Prandtl number corresponding to liquid sodium. This indicates that the zero-Prandtl-number limit provides a reasonable approximation for the prediction of low-Prandtl-number convection. For a free-slip bottom wall, the flow always remains three-dimensional. For the no-slip wall, two-dimensional solutions are observed in some interval of Marangoni numbers. Beyond the Marangoni number for onset of inertial convection in two-dimensional simulations, the convective flow becomes strongly intermittent because of the interplay of the flywheel effect and three-dimensional instabilities of the two-dimensional rolls. The velocity field in this intermittent regime is characterized by the occurrence of very small vortices at the free surface which form as a result of vortex stretching processes. Similar structures were found with the free-slip bottom at slightly smaller Marangoni number. These observations demonstrate that a high numerical resolution is necessary even at moderate Marangoni numbers in order to properly capture the small-scale dynamics of Marangoni convection at low Prandtl numbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3