The preparation of water for surface-clean fluid mechanics

Author:

Scott John C.

Abstract

This paper describes the development of a new technique for removing surface-active contaminants from water so that it may be used for surface-clean experiments in fluid mechanics. The removal of contamination from concentrated aqueous solutions of non-surface-active materials is also possible, allowing considerable variation of density and viscosity in these experiments. Instead of using the conventional distillation processes necessary for most work involving surface chemical phenomena, surface-active substances are removed by adsorption onto a dense current of small nitrogen gas bubbles rising in a long vertical column of the water. The efficiency of the technique was found to increase to a great extent when common salt was dissolved in the water, up to concentrations around 40 g/l, and experiments are described which allow the identification of several physical processes which aid the operation of the method. The adequate performance of the cleaning technique in the removal both of an ionic surface-active material and also of Gentian Violet dye is demonstrated. The method should permit the design of surface-clean experiments using much larger volumes of water than are possible when the water has to be distilled using conventional surface chemical techniques. A simple apparatus for the measurement of surface tension is also described.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Sebba, F. 1960 Nature,188,736–737.

2. Padday, J. F. 1957 In Proc. 2nd Int. Cong. Surface Activity , vol. 1,pp.1–6.Butterworths.

3. Davies, J. T. & Vose, R. W. 1965 Proc. Roy. Soc A286,218–234.

4. Lemlich, R. 1972 Adsorptive Bubble Separation Techniques ,pp.1–5,133–143.Academic.

5. Gleim, V. G. , Shelomov, I. K. & Shidlovskii, B. R. 1959 J. Appl. Chem. U.S.S.R. 32,1069–1072.

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3