Flow along a diverging channel

Author:

DENNIS S. C. R.,BANKS W. H. H.,DRAZIN P. G.,ZATURSKA M. B.

Abstract

This paper treats the two-dimensional steady flow of a viscous incompressible fluid driven through a channel bounded by two walls which are the radii of a sector and two arcs (the ‘inlet’ and ‘outlet’), with the same centre as the sector, at which inflow and outflow conditions are imposed. The computed flows are related to both a laboratory experiment and recent calculations of the linearized ‘spatial’ modes of Jeffery–Hamel flows. The computations, at a few values of the angle between the walls of the sector and several values of the Reynolds number, show how the first bifurcation of the flow in a channel is related to spatial instability. They also show how the end effects due to conditions at the inlet and outlet of the channel are related to the spatial modes: in particular, Saint-Venant's principle breaks down when the flow is spatially unstable, there being a temporally stable steady flow for which small changes at the inlet or outlet create substantial effects all along the channel. The choice of a sector as the shape of the channel is to permit the exploitation of knowledge of the spatial modes of Jeffery–Hamel flows, although we regard the sector as an example of channels with walls of moderate curvature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3