Steep capillary-gravity waves in oscillatory shear-driven flows

Author:

JALIKOP SHREYAS V.,JUEL ANNE

Abstract

We study steep capillary-gravity waves that form at the interface between two stably stratified layers of immiscible liquids in a horizontally oscillating vessel. The oscillatory nature of the external forcing prevents the waves from overturning, and thus enables the development of steep waves at large forcing. They arise through a supercritical pitchfork bifurcation, characterized by the square root dependence of the height of the wave on the excess vibrational Froude number (W, square root of the ratio of vibrational to gravitational forces). At a critical valueWc, a transition to a linear variation inWis observed. It is accompanied by sharp qualitative changes in the harmonic content of the wave shape, so that trochoidal waves characterize the weakly nonlinear regime, but ‘finger’-like waves form forWWc. In this strongly nonlinear regime, the wavelength is a function of the product of amplitude and frequency of forcing, whereas forW<Wc, the wavelength exhibits an explicit dependence on the frequency of forcing that is due to the effect of viscosity. Most significantly, the radius of curvature of the wave crests decreases monotonically withWto reach the capillary length forW=Wc, i.e. the lengthscale for which surface tension forces balance gravitational forces. ForW<Wc, gravitational restoring forces dominate, but forWWc, the wave development is increasingly defined by localized surface tension effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference31 articles.

1. Frozen wave induced by high frequency horizontal vibrations on aCO2liquid-gas interface near the critical point

2. An experimental study of standing waves

3. Development of a steady relief at the interface of fluids in a vibrational field.;Lyubimov;Fluid Dyn.,1987

4. Highly nonlinear standing waves with small capillary effect.;Schultz;J. Fluid Mech.,1998

5. On the theory of oscillatory waves.;Stokes;Camb. Phil. Soc. Trans.,1847

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3