Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 2. Passive scalar field

Author:

WANG LIAN-PING,CHEN SHIYI,BRASSEUR JAMES G.

Abstract

Using direct numerical simulations (DNS) and large-eddy simulations (LES) of velocity and passive scalar in isotropic turbulence (up to 5123 grid points), we examine directly and quantitatively the refined similarity hypotheses as applied to passive scalar fields (RSHP) with Prandtl number of order one. Unlike previous experimental investigations, exact energy and scalar dissipation rates were used and scaling exponents were quantified as a function of local Reynolds number. We first demonstrate that the forced DNS and LES scalar fields exhibit realistic inertial-range dynamics and that the statistical characteristics compare well with other numerical, theoretical and experimental studies. The Obukhov–Corrsin constant for the k−5/3 scalar variance spectrum obtained from the 5123 mesh is 0.87±0.10. Various statistics indicated that the scalar field is more intermittent than the velocity field. The joint probability distribution of locally-averaged energy dissipation εr and scalar dissipation χr is close to log-normal with a correlation coefficient of 0.25±0.01 between the logarithmic dissipations in the inertial subrange. The intermittency parameter for scalar dissipation is estimated to be in the range 0.43≈0.77, based on direct calculations of the variance of lnχr. The scaling exponents of the conditional scalar increment δrθ[mid ] χr,εr suggest a tendency to follow RSHP. Most significantly, the scaling exponent of δrθ[mid ] χr,εr over εr was shown to be approximately −⅙ in the inertial subrange, confirming a dynamical aspect of RSHP. In agreement with recent experimental results (Zhu et al. 1995; Stolovitzky et al. 1995), the probability distributions of the random variable βs = δrθ[mid ] χr,εr/ (χ1/2r ε−⅙rr1/3) were found to be nearly Gaussian. However, contrary to the experimental results, we find that the moments of βs are almost identical to those for the velocity field found in Part 1 of this study (Wang et al. 1996) and are insensitive to Reynolds number, large-scale forcing, and subgrid modelling.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3