Author:
MATHEW GEORGE,MEZIĆ IGOR,GRIVOPOULOS SYMEON,VAIDYA UMESH,PETZOLD LINDA
Abstract
Motivated by the problem of microfluidic mixing, optimal control of advective mixing in Stokes fluid flows is considered. The velocity field is assumed to be induced by a finite set of spatially distributed force fields that can be modulated arbitrarily with time, and a passive material is advected by the flow. To quantify the degree of mixedness of a density field, we use a Sobolev space norm of negative index. We frame a finite-time optimal control problem for which we aim to find the modulation that achieves the best mixing for a fixed value of the action (the time integral of the kinetic energy of the fluid body) per unit mass. We derive the first-order necessary conditions for optimality that can be expressed as a two-point boundary value problem (TPBVP) and discuss some elementary properties that the optimal controls must satisfy. A conjugate gradient descent method is used to solve the optimal control problem and we present numerical results for two problems involving arrays of vortices. A comparison of the mixing performance shows that optimal aperiodic inputs give better results than sinusoidal inputs with the same energy.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献