An experimental study of vortex shedding behind linearly tapered cylinders at low Reynolds number

Author:

Piccirillo Paul S.,Van Atta C. W.

Abstract

Experiments were performed to study vortex shedding behind a linearly tapered cylinder. Four cylinders were used, with taper ratios varying from 50:1 to 100:1. The cylinders were each run at four different velocities, adjusted to cover the range of laminar vortex shedding for a non-tapered cylinder. The flow was confirmed to consist of discrete shedding cells, each with a constant frequency. For a centrespan Reynolds number greater than 100, the dimensionless mean cell length was found to be a constant. Individual cell size was found to be roughly self-similar. New shedding cells were created on the ends of the cylinders, or in regions adjacent to areas not shedding. Successful scalings were found for both the cell shedding frequencies and their differences, the modulation frequencies. The modulation frequencies were found to be constant along the cylinder span. The shedding frequency Strouhal number versus Reynolds number curve was found to have a slightly steeper slope than the Strouhal number curve for a non-tapered cylinder. Vortex shedding was found to begin at a local Reynolds number of about 60, regardless of any other factors. End effects were found to be of little importance.The vortex splits, which form the links between shedding cells, were found to be similar in some respects to those found by earlier investigators. Amplitude results suggested that the splits at different spanwise locations are temporally sequenced by an overall flow mechanism, a supposition confirmed by flow visualization. Wavelet analysis results showed that while the behaviour of the shedding frequencies in time was relatively unaffected by changing taper ratio, the behaviour of the modulation frequency in time was greatly affected. Comparisons with other experiments point out the universality of vortex splitting phenomena.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference21 articles.

1. Browand, F. K. & Prost-Domasky, S. 1990 Experiment on pattern evolution in the 2-D mixing layer. In New Trends in Nonlinear Dynamics and Patterning Phenomena: The Geometry of Non Equilibrium. (ed, P. Coullet & P. Huerre ).Plenum.

2. Gaster, M. 1969 Vortex shedding from slender cones at low Reynolds numbers.J. Fluid Mech. 38,565–576.

3. Maull, D. J. & Young, R. A. 1973 Vortex shedding from bluff bodies in shear flow.J Fluid Mech. 60,401–409.

4. Roshko, A. 1954 On the development of turbulent wakes from vortex streets.NACA Rep. 1191.

5. Slaouti, A. & Gerrard, J. H. 1981 An experimental investigation of the end effects of the wake of a circular cylinder towed through water at low Reynolds numbers.J. Fluid Mech. 112,297–314.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3