Transverse motion of a disk through a rotating viscous fluid

Author:

Tanzosh John P.,Stone H. A.

Abstract

A thin rigid disk translates edgewise perpendicular to the rotation axis of an unbounded fluid undergoing solid-body rotation with angular velocity Ω. The disk face, with radius a, is perpendicular to the rotation axis. For arbitrary values of the Taylor number, [Tscr ] = Ωa2/ν, and in the limit of zero Reynolds number [Rscr ]e, the linearized viscous equations reduce to a complex-valued set of dual integral equations. The solution of these dual equations yields an exact representation for the velocity and pressure fields generated by the translating disk.For large rotation rates [Tscr ] [Gt ] 1, the O(1) disturbance velocity field is confined to a thin O([Tscr ]−1/2) boundary layer adjacent to the disk. Within this boundary layer, the flow field near the disk centre undergoes an Ekman spiral similar to that created by a nearly geostrophic flow adjacent to an infinite rigid plate. Additionally, flow within the boundary layer drives a weak O([Tscr ]−1/2) secondary flow which extends parallel to the rotation axis and into the far field. This flow consists of two counter-rotating columnar eddies, centred over the edge of the disk, which create a net in-plane flow at an angle of 45° to the translation direction of the disk. Fluid is transported axially toward/away from the disk within the core of these eddies. The hydrodynamic force (drag and lift) varies as O([Tscr ]1/2) for [Tscr ] [Gt ] 1; this scaling is consistent with the viscous stresses created in the Ekman boundary layer. Additionally, an approximate expression, suitable for all Taylor numbers, is given for the hydrodynamic force on a disk translating broadside along the rotation axis and edgewise transverse to the rotation axis.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference42 articles.

1. Vaziri, A. & Boyer, D. L. 1971 Rotating flow over shallow topographies.J. Fluid Mech. 50,79–95.

2. Stewartson, K. 1953 On the slow motion of an ellipsoid in a rotating fluid.Q. J. Mech. Appl. Maths 21,353–373.

3. Hide, R. 1966 On the dynamics of rotating fluids and related topics in geophysical fluid dynamics.Bull. Am. Met. Soc. 47,873–885.

4. Karanfilian, S. K. & Kotas, T. J. 1981 Motion of a spherical particle in a liquid rotating as a solid body.Proc. R. Soc. Lond. A376,525–544.

5. Gradshteyn, I. S. & Ryzhik, I. M. 1965 Table of Integrals, Series and Products .Academic Press.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3