The effect of barotropic instability on the nonlinear evolution of a Rossby-wave critical layer

Author:

Haynes Peter H.

Abstract

A study of the flow within the critical layer of a forced Rossby-wave is made, using a high-resolution numerical model. The possibility of growth of disturbances through barotropic instability and the extent to which these disturbances modify the subsequent time evolution is of particular interest. The flow is characterized by a parameter μ, equal to the cross-stream lengthscale divided by a downstream wavelength. In the long-wavelength case, μ [Lt ] 1, where there is a clear conceptual division between the instability and the basic flow, the results of the simulation confirm the importance of the growing and saturating disturbances in rearranging the vorticity within the critical layer. When the wavelength is not so long, the distinction between the instability and the straightforward time evolution of the basic flow is less clear. Nonetheless for μ < 0.25 the ultimate evolution is still sensitive to the details of the initial perturbations and in this sense the flow may be regarded as being unstable. The time-integrated absorptivity of the critical layer may be considerably increased by the effects of the instability, sometimes to three or four times that predicted by the Stewartson-Warn-Warn solution. The nature of the flow, at least during the period in which the dynamics are essentially inviscid, does not seem to change when higher harmonics to the forced wave are resonant. The behaviour seen in Béland's (1976) numerical model is re-examined in the light of these findings. A simple model of the redistribution of vorticity by the unstable disturbances is formulated, and its predictions are shown to agree well with the numerical simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Warn, T. & Warn, H. 1976 On the development of a Rossby-wave critical level.J. Atmos. Sci. 33,2021–2024.

2. Stewartson, K. 1978 The evolution of the critical layer of a Rossby-wave.Geophys. Astrophys. Fluid Dyn. 9,185–200.

3. Ritchie, H. 1984 Amplification of forced Rossby waves in the presence of a nonlinear critical layer.J. Atmos. Sci. 41,2012–2019.

4. Churilov, S. M. & Shukhman, I. G. 1987 The nonlinear development of disturbances in a zonal shear flow.Geophys. Astrophys. Fluid Dyn. 38,145–175.

5. Haberman, R. 1972 Critical layers in parallel flows.Stud. Appl. Maths. 51,139–161.

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3