Experimental study of dipolar vortices on a topographic βT-plane

Author:

Fuentes O. U. Velasco,Heijst G. J. F. Van

Abstract

The behaviour of dipolar vortices in a rotating fluid with a sloping bottom (simulating the variation of the Coriolis parameter on the Earth, with the direction of steepest bottom slope corresponding with the northern direction) has been investigated in the laboratory. Dipoles were generated by moving a vertical cylinder through the fluid. Dye photographs provided qualitative information, whereas quantitative information about the evolving flow field was obtained by streak photography. Dipoles initially directed under a certain angle relative to the west–east axis showed meandering or cycloid-like trajectories. Soeme symmetries between east-travelling dipoles (ETD's) and west-travelling dipoles (WTD's) were observed. ETD's are stable in the trajectory sense: a small deviation from zonal motion results in small oscillations around the equilibrium latitude. WTD's are unstable: small initial deviations produce large displacements in northern or southern directions. This asymmetry arises because the vorticity of a dipole moving westward is anticorrelated with the ambient vorticity, while the vorticities are correlated when the dipole moves eastward. ETD's increase in size and eventually split into two independent monopoles, the rate of growth depending on the gradient of planetary vorticity. WTD's are initially more compact but owing to the large displacements in the meridional direction strong asymmetries in the circulation of the two halves are produced, resulting in a large deformation of the weaker part. The experimental observations show good qualitative agreement with analytical and numerical results obtained using a modulated point-vortex model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. Pedlosky, J. 1979 Geophysical Fluid Dynamics .Springer.

2. Carnevale, G. F. , Kloosterziel, R. C. & Heijst, G. J. F. van 1991 Propagation of barotropic vortices over topography in a rotating tank.J. Fluid Mech. 233,119–139.

3. Nguyen Duc, J. M. & Sommeria, J. 1988 Experimental characterization of steady two-dimensional vortex couples.J. Fluid Mech. 192,175–192.

4. Kono, M. & Horton, W. 1991 Point vortex description of drift wave vortices: Dynamics and transport.Phys. Fluids B3,3255–3262.

5. Adem, J. 1956 A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices.Tellus VIII,364–372.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3