Long-time behaviour of the drag on a body in impulsive motion

Author:

Lawrence Christopher J.,Mei Renwei

Abstract

We consider the response of the hydrodynamic drag on a body in rectilinear motion to a change in the speed between two steady states, from U1 to U2 [ges ] 0. We consider situations where the body generates no lift, such as occur for bodies with an axis of symmetry aligned with the motion. At large times, the laminar wake consists of two quasi-steady regions – the new wake and the old wake – connected by a transition zone that is convected downstream with the mean speed U2. A global mass balance indicates the existence of a sink flow centred on the transition zone, and this is responsible for the leading-order behaviour of the unsteady force at long times. For the case of U1 [ges ] 0, the force is shown to decay algebraically with the inverse square of time for any finite Reynolds number (Re), and this result is also shown to hold for non-rectilinear motions. A recent analysis for small Reynolds number including terms to O(Re) (Lovalenti & Brady 1993 a) has indicated that the force decays as the inverse square of time for motion started from rest, but decays exponentially for a change between two positive velocities. The former result is found to be correct, but the exponential decay at O(Re) in the latter case is superseded at large times by the inverse-square time decay which is shifted to O(Re2) because the wake flux is nearly constant for small Re. The cases of reversed flow (U1 < 0) and stopped flow (U2 = 0) are treated separately, and it is shown that the transient force is dominated by the effects of the old wake, leading to a slower decay as the simple inverse of time. The force is determined by the far regions of the flow field and so the results are valid for any (symmetric) particle, bubble or drop and (in an average sense) for any Re, provided τ ma {Re, Re−1}, where the time τ is made dimensionless with the convection timescale. The analytical results are compared to detailed numerical calculations for transient flow over spherical particles and bubbles and compelling agreement is observed. These are believed to be the first calculations which adequately resolve the transient far wake behind a bluff body at long times. The asymptotic result for the force is applied to determine that the approach to terminal velocity of a body in free fall is also as the inverse square of time.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Mei, R. , Lawrence, C. J. & Adrian, R. J. 1991 Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free stream velocity.J. Fluid Mech. 233,613–628.

2. Mei, R. 1994 Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number.J. Fluid Mech. 270,133–174.

3. Pozrikidis, C. 1989 A study of linearized oscillatory flow past particles by the boundary integral method.J. Fluid Mech. 202,17–41.

4. Clift, R. , Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles .Academic Press.

5. Mei, R. & Lawrence, C. J. 1994 Long-time unsteady laminar wake of a bluff body at finite Reynolds number.J. Fluid Mech. (submitted).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3