Shear flow over a translationally symmetric cylindrical bubble pinned on a slot in a plane wall

Author:

Feng James Q.,Basaran Osman A.

Abstract

Steady states of a translationally-symmetric cylindrical bubble protruding from a slot in a solid wall into a liquid undergoing a simple shear flow are investigated. Deformations of and the flow past the bubble are determined by solving the nonlinear free-boundary problem comprised of the two-dimensional Navier–Stokes system by the Galerkin/finite element method. Under conditions of creeping flow, the results of finite element computations are shown to agree well with asymptotic results. When the Reynolds number Re is finite, flow separates from the free surface and a recirculating eddy forms behind the bubble. The length of the separated eddy measured in the flow direction increases with Re, whereas its width is confined to within the region that lies between the supporting solid surface and the separation point at the free surface. By tracking solution branches in parameter space with an arc-length continuation method, curves of bubble deformation versus Reynolds number are found to exhibit turning points when Re reaches a critical value Rec. Therefore, along a family of bubble shapes, solutions do not exist when Re > Rec. The locations of turning points and the structure of flow fields are found to be governed virtually by a single parameter, We = Ca Re, where We and Ca are Weber and capillary numbers. Two markedly different modes of bubble deformation are identified at finite Re. One is dominant when Re is small and is tantamount to a plain skewing or tilting of the bubble in the downstream direction; the other becomes more pronounced when Re is large and corresponds to a pure upward stretching of the bubble tip.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference50 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Breakup of a low-viscosity liquid thread;Physical Review Fluids;2022-11-23

2. Fire ant rafts elongate under fluid flows;Bioinspiration & Biomimetics;2022-06-09

3. Local dynamics during thinning and rupture of liquid sheets of power-law fluids;Journal of Fluid Mechanics;2022-05-17

4. Electrohydrodynamics of lenticular drops and equatorial streaming;Journal of Fluid Mechanics;2021-08-31

5. Dynamic analysis of deformation and start-up process of residual-oil droplet on wall under shear flow;Journal of Petroleum Science and Engineering;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3