Transition stages of Rayleigh–Taylor instability between miscible fluids

Author:

COOK ANDREW W.,DIMOTAKIS PAUL E.

Abstract

Direct numerical simulations (DNS) are presented of three-dimensional, Rayleigh–Taylor instability (RTI) between two incompressible, miscible fluids, with a 3:1 density ratio. Periodic boundary conditions are imposed in the horizontal directions of a rectangular domain, with no-slip top and bottom walls. Solutions are obtained for the Navier–Stokes equations, augmented by a species transport-diffusion equation, with various initial perturbations. The DNS achieved outer-scale Reynolds numbers, based on mixing-zone height and its rate of growth, in excess of 3000. Initial growth is diffusive and independent of the initial perturbations. The onset of nonlinear growth is not predicted by available linear-stability theory. Following the diffusive-growth stage, growth rates are found to depend on the initial perturbations, up to the end of the simulations. Mixing is found to be even more sensitive to initial conditions than growth rates. Taylor microscales and Reynolds numbers are anisotropic throughout the simulations. Improved collapse of many statistics is achieved if the height of the mixing zone, rather than time, is used as the scaling or progress variable. Mixing has dynamical consequences for this flow, since it is driven by the action of the imposed acceleration field on local density differences.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3