An enthalpy-based hybrid lattice-Boltzmann method for modelling solid–liquid phase transition in the presence of convective transport

Author:

CHAKRABORTY SUMAN,CHATTERJEE DIPANKAR

Abstract

An extended lattice Boltzmann model is developed for simulating the convection–diffusion phenomena associated with solid–liquid phase transition processes. Macroscopic hydrodynamic variables are obtained through the solution of an evolution equation of a single-particle density distribution function, whereas, the macroscopic temperature field is obtained by solving auxiliary scalar transport equations. The novelty of the present methodology lies in the formulation of an enthalpy-based approach for phase-change modelling within a lattice-Boltzmann framework, in a thermodynamically consistent manner. Thermofluidic aspects of phase transition are handled by means of a modified enthalpy–porosity formulation, in conjunction with an appropriate enthalpy-updating closure scheme. Lattice-Boltzmann simulations of melting of pure gallium in a rectangular enclosure, Rayleigh–Bénard convection in the presence of directional solidification in a top-cooled cavity, and crystal growth during solidification of an undercooled melt agree well with the numerical and experimental results available in the literature, and provide substantial evidence regarding the upscaled computational economy provided by the present methodology.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference57 articles.

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3