Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities

Author:

MARQUET OLIVIER,LOMBARDI MATTEO,CHOMAZ JEAN-MARC,SIPP DENIS,JACQUIN LAURENT

Abstract

The stability of the recirculation bubble behind a smoothed backward-facing step is numerically computed. Destabilization occurs first through a stationary three-dimensional mode. Analysis of the direct global mode shows that the instability corresponds to a deformation of the recirculation bubble in which streamwise vortices induce low- and high-speed streaks as in the classical lift-up mechanism. Formulation of the adjoint problem and computation of the adjoint global mode show that both the lift-up mechanism associated with the transport of the base flow by the perturbation and the convective non-normality associated with the transport of the perturbation by the base flow explain the properties of the flow. The lift-up non-normality differentiates the direct and adjoint modes by their component: the direct is dominated by the streamwise component and the adjoint by the cross-stream component. The convective non-normality results in a different localization of the direct and adjoint global modes, respectively downstream and upstream. The implications of these properties for the control problem are considered. Passive control, to be most efficient, should modify the flow inside the recirculation bubble where direct and adjoint global modes overlap, whereas active control, by for example blowing and suction at the wall, should be placed just upstream of the separation point where the pressure of the adjoint global mode is maximum.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3