On the mixing of angular momentum in a stirred rotating fluid

Author:

Bretherton F. P.,Turner J. S.

Abstract

It has been suggested on theoretical grounds that a vortex could be initiated in a cylindrical region of fluid, originally in solid rotation, by the horizontal mixing of angular momentum produced by external stirring. In this paper various arguments for and against the mechanism are examined and their difficulties exposed. No firm conclusion is reached. A series of mathematical models of the mixing motions has been used, to bring out the differences between mechanical stirring and the agitation of a gas by random molecular motions. They suggest the introduction of a diffusion coefficient for angular momentum, to be determined empirically. These theoretical ideas are then applied to the interpretation of the results of a laboratory experiment which has been designed to test the proposed mechanism directly.A wide, flat tank of liquid was set up on a rotating table and stirred with a vertically oscillated grid, whose elements were much smaller than the width of the tank. A neutrally buoyant particle was used as a tracer of fluid motions, to measure relative circulation velocities and the properties of the turbulence. The motion observed was dominated by the loss of angular momentum to the walls and the grid, an effect which has not been taken into account in previous theoretical assessments of the effects of mixing of angular momentum. The relative circulation present was not significantly different from zero, and the limits of error of the measurements imply that the rate of diffusion of angular momentum is less than 5% of that for fluid particles, with 95% probability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference8 articles.

1. Rayleigh, LORD 1916 Scientific Papers,6,447.

2. Prandtl, L. 1931 Proceedings of the World Engineering Congress, Tokyo,5,495–507.

3. KÜCHEMANN, D. 1965 J. Fluid Mech. 21,1–20.

4. Batchelor, G. K. 1967 Introduction to Fluid Dynamics .Cambridge University Press.

5. Scorer, R. S. 1966 Sci. J. 2,46–52.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3