Mechanisms of transition and heat transfer in a separation bubble

Author:

SPALART PHILIPPE R.,STRELETS MICHAEL KH.

Abstract

The laminar boundary layer on a flat surface is made to separate by way of aspiration through an opposite boundary, causing approximately a 25% deceleration. The detached shear layer transitions to turbulence, reattaches, and evolves towards a normal turbulent boundary layer. We performed the direct numerical simulation (DNS) of this flow, and believe that a precise experimental repeat is possible. The pressure distribution and the Reynolds number based on bubble length are close to those on airfoils; numerous features are in agreement with Gaster's and other experiments and correlations. At transition a large negative surge in skin friction is seen, following weak negative values and a brief contact with zero; this could be described as a turbulent re-separation. Temperature is treated as a passive scalar, first with uniform wall temperature and then with uniform wall heat flux. The transition mechanism involves the wavering of the shear layer and then Kelvin–Helmholtz vortices, which instantly become three-dimensional without pairing, but not primary Görtler vortices. The possible dependence of the DNS solution on the residual incoming disturbances, which we keep well below 0.1%, and on the presence of a ‘hard’ opposite boundary, are discussed. We argue that this flow, unlike the many transitional flows which hinge on a convective instability, is fully specified by just three parameters: the amount of aspiration, and the streamwise and the depth Reynolds numbers (heat transfer adds the Prandtl number). This makes comparisons meaningful, and relevant to separation bubbles on airfoils in low-disturbance environments. We obtained Reynolds-averaged Navier–Stokes (RANS) results with simple turbulence models and spontaneous transition. The agreement on skin friction, displacement thickness, and pressure is rather good, which we attribute to the simple nature of ‘transition by contact’ due to flow reversal. In contrast, a surge of the heat-transfer coefficient violates the Reynolds analogy, and is greatly under-predicted by the models.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 235 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3