Experiments on ripple instabilities. Part 1. Resonant triads

Author:

Henderson Diane M.,Hammack Joseph L.

Abstract

Water waves for which both gravitation and surface tension are important (ripples) exhibit a variety of instabilities. Here, experimental results are presented for ripple wavetrains on deep water with frequencies greater than 19.6 Hz where a continuum of resonant triad interactions are dynamically admissible. The experimental wave-trains are indeed unstable, and the instability becomes more pronounced as non-linearity is increased. The unstable wavefield is characterized by significant spatial disorder while temporal measurements at fixed spatial locations remain quite ordered. In fact, for most experiments temporal measurements suggest that a selection process exists in which a single triad dominates evolution. The dominant triad typically does not involve a subharmonic frequency of the generated wave and persists over a wide range of amplitudes for the initial wave. Viscosity does not appear to be important in the selection process; however, it may be responsible for the lack of subsequent triad production by the excited waves of the initial triad. The presence of a selection process contradicts previous conjecture, based on the form of the interaction coefficients, that a broad-banded spectrum of waves should occur. The general absence of subharmonic growth also contradicts previously reported experiments. Results are also presented for wavetrains at the parametric boundary of 19.6 Hz and a degenerate case of resonant triads at 9.8 Hz (Wilton's ripples). In addition to resonant triads, the experiments show evidence of (generally) weaker narrow-band interactions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Rayleigh, Lord 1945 The Theory of Sound.Dover.

2. McGoldrick, L. F. 1965 Resonant interactions among capillary–gravity waves.J. Fluid Mech. 21,305–331.

3. Craik, A. D. D. 1986 Exact solutions of non-conservative equations for three-wave and second harmonic resonance.Proc. R. Soc. Lond. A406,1–12.

4. Rayleigh, Lord 1890 On the tension of water surfaces, clean and contaminated, investigated by the method of ripples. Reprinted 1964 in Scientific Papers , vol. 3, pp.397–425.Dover.

5. Bannerjee, P. P. & Korpel, A. 1982 Subharmonic generation by resonant three-wave interaction of deep-water capillary waves.Phys. Fluids 25,1938–1943.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3