Mass transport of interfacial waves in a two-layer fluid system

Author:

Wen Jiangang,Liu Philip L.-F.

Abstract

Effects of viscous damping on mass transport velocity in a two-layer fluid system are studied. A temporally decaying small-amplitude interfacial wave is assumed to propagate in the fluids. The establishment and the decay of mean motions are considered as an initial-boundary-value problem. This transient problem is solved by using a Laplace transform with a numerical inversion. It is found that thin ‘second boundary layers’ are formed adjacent to the interfacial Stokes boundary layers. The thickness of these second boundary layers is of O1/2) in the non-dimensional form, where ε is the dimensionless Stokes boundary layer thickness defined as $\epsilon = \hat{k}\hat{\delta}=\hat{k}(2\hat{v}/\hat{\sigma})^{1/2}$ for an interfacial wave with wave amplitude â, wavenumber $\hat{k}$ and frequency $\hat{\sigma}$ in a fluid with viscosity $\hat{v}$. Inside the second boundary layers there exists a strong steady streaming of O2ε−1/2), where $\alpha = \hat{k}\hat{a}$ is the surface wave slope. The mass transport velocity near the interface is much larger than that in a single-layer system, which is O2) (e.g. Longuet-Higgins 1953; Craik 1982). In the core regions outside the thin second boundary layers, the mass transport velocity is enhanced by the diffusion of the mean interfacial velocity and vorticity. Because of vertical diffusion and viscous damping of the mean interfacial vorticity, the ‘interfacial second boundary layers’ diminish as time increases. The mean motions eventually die out owing to viscous attenuation. The mass transport velocity profiles are very different from those obtained by Dore (1970, 1973) which ignored viscous attenuation. When a temporally decaying small-amplitude surface progressive wave is propagating in the system, the mean motions are found to be much less significant, O2).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference14 articles.

1. Dalrymple, A. D. & Liu, P. L.-F. 1978 Waves over soft muds: a two-layer fluid model.J. Geophys. Oceanogr. 8,1121–1131.

2. Young, F. D. L. & Liggett, J. A. 1977 Transient finite element shallow lake circulation.J. Hydraul. Div. ASCE 103,109–121.

3. Schapery, R. A. 1962 Approximate methods of transform inversion for viscoelastic stress analysis.Proc. 4th US National Congress Appl. Mech. 2,1075–1085.

4. Dore, B. D. 1973 On mass transport induced by interfacial oscillations at a single frequency.Proc. Camb. Phil. Soc. 74,333–347.

5. Mei, C. C. & Liu, P. L.-F. 1973 The damping of surface gravity waves in a bounded liquid.J. Fluid Mech. 59,239–256.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3