Observations and other characteristics of thermals

Author:

Sparrow E. M.,Husar R. B.,Goldstein R. J.

Abstract

Experiments have been performed to explore the qualitative and quantitative characteristics of thermals which ascend through the fluid environment above a heated horizontal surface. With water as the participating fluid, an electrochemical technique was employed which made the flow field visible and facilitated the direct observation of thermals. Measurements were also made of the fluid temperature above an active site of thermal generation.As seen in flow field photographs, a thermal has a mushroom-like appearance, with a blunted nearly hemispherical cap. At a given heating rate, thermals are generated at fixed sites which are spaced more or less regularly along the span of the heated surface. At these sites, the generation of thermals is periodic in time, thereby validating a prediction of Howard. Both the spatial frequency of the sites and the rate of thermal production increase with increases in heating rate. The break-up Rayleigh number of the conduction layer is shown to be a constant (within the uncertainties of the experiment), which is in accord with Howard's phenomenological model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 223 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laminar line source starting plumes and their interaction with energy expulsion events;Acta Mechanica;2024-02-07

2. Clouds Formed by Thermals Arising and Evolving Under the Influence of the Coriolis Force;Lecture Notes in Computer Science;2024

3. Initial Flow Behavior in Laminar Line Source Twin Plumes of Equal Strength;Lecture Notes in Mechanical Engineering;2024

4. Experiment of a thermal plume on an open cylinder;Journal of Fluid Mechanics;2023-10-25

5. Non-similarity Solutions of MHD Boundary Layer Flow;Advances in Mathematical Modelling, Applied Analysis and Computation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3