Three-dimensional baroclinic instability of a Hadley cell for small Richardson number

Author:

Antar Basil N.,Fowlis William W.

Abstract

A three-dimensional linear stability analysis of a baroclinic flow for Richardson number Ri of order unity is presented. The model considered is a thin, horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The basic state is a Hadley cell which is a solution of the Navier–Stokes and energy equations and contains both Ekman and thermal boundary layers adjacent to the rigid boundaries; it is given in closed form. The stability analysis is also based on the Navier–Stokes and energy equations; and perturbations possessing zonal, meridional and vertical structures were considered. Numerical methods were developed for the solution of the stability problem, which results in an ordinary differential eigenvalue problem. The objectives of this work were to extend the previous theoretical work on three-dimensional baroclinic instability for small Ri to a more realistic model involving the Prandtl number σ and the Ekman number E, and to finite growth rates and a wider range of the zonal wavenumber. The study covers ranges of 0.135 [les ] Ri [les ] 1.1, 0.2 [les ] σ [les ] 5.0, and 2 × 10−4 [les ] E [les ] 2 σ 10−3. For the cases computed for E = 10−3 and σ ≠ 1, we found that conventional baroclinic instability dominates for Ri > 0.825 and symmetric baroclinic instability dominates for Ri < 0.675. However, for E [ges ] 5 × 10−4 and σ = 1 in the range 0.3 [les ] Ri [les ] 0.8, conventional baroclinic instability always dominates. Further, we found in general that the symmetric modes of maximum growth are not purely symmetric but have weak zonal structure. This means that the wavefronts are inclined at a small angle to the zonal direction. The results also show that as E decreases the zonal structure of the symmetric modes of maximum growth rate also decreases. We found that when zonal structure is permitted the critical Richardson number for marginal stability is increased, but by only a small amount above the value for pure symmetric instability. Because these modes do not substantially alter the results for pure symmetric baroclinic instability and because their zonal structure is weak, it is unlikely that they represent a new type of instability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Calman, J. 1977 Experiments on high Richardson number instability of a rotating stratified shear flow Dyn. Atmos. Oceans 1,277–297.

2. Mcintyre, M. E. 1970 Diffusive destabilization of the baroclinic circular vortex Geophys. Fluid Dyn. 1,19–57.

3. Bennets, D. A. & Hoskins, B. J. 1979 Conditional symmetric instability a possible explanation for frontal rainbands Q. J. R. Met. Soc. 105,945–962.

4. Antar, B. N. & Fowlis, W. W. 1982 Symmetric baroclinic instability of a Hadley cell J. Atmos. Sci. 39,1280–1289.

5. Hadlock, R. K. , Na, J. Y. & Stone, P. H. 1972 Direct thermal verification of symmetric baroclinic instability J. Atmos. Sci. 29,1391–1393.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3